A method and apparatus for automatically tuning feedforward parameters is provided, such that feedforward commands can be generated and used in addition to traditional control commands to compensate for known system characteristics. In an exemplary embodiment, feedforward gains are automatically determined after moving an actuator controlled axis, such as a motor imparting motion to a linear slide, through a test motion routine and recording operation data associated with the actuator and axis during the movement. The operation data can include velocity measurements and torque commands. The feedforward gains which are tuned can include a Coulomb friction feedforward gain, a viscous friction feedforward gain, a constant offset feedforward gain, an acceleration feedforward gain, and estimates of velocity loop compensator gains. Capability can also be provided for automatic generation of the test motion routine based upon actuator limit values provided by the user.
Motion Control System And Method Utilizing Spline Interpolation
A spline interpolation motion control system and method that can automatically determine where sharp corners and flat sections were intended in a part program. In one embodiment, based upon the length ratio of two consecutive spans, the system and method determines whether to interpolate the first span with a line or with a spline function. If a parameter range is not met, then the span is interpolated as a line to maintain the intended flat section in the program. Also, in this embodiment, the angle defined by a pair of consecutive spans is used to determine whether the two spans should be interpolated with lines or with splines. If a tolerance is exceeded, then the spans are interpolated linearly to maintain the intended sharp corner in the part program.
Method And Apparatus For Determining Calibration Options In A Motion Control System
In one embodiment, a method of and apparatus for determining calibration options in a motion control system is provided. The method includes the steps of measuring error in a commanded motion, modeling the error, identifying sources of the error; and predicting a degree to which applying compensation for one of the sources of the error might affect the error.
Method And Apparatus For Self-Calibrating A Motion Control System
In one embodiment, a method of and apparatus for self-calibrating a motion control system is provided. The method includes the steps of receiving a test parameter, ensuring a reasonable test can be executed based on the test parameter, generating a part program based upon the test parameter, instructing a user of the motion control system regarding set up of a device capable of acquiring data associated with the test, and executing the test, wherein the part program is executed as part of the test.
Method And Apparatus For Tuning Compensation Parameters In A Motion Control System Associated With A Mechanical Member
In one embodiment, a method and machine are provided for tuning compensation parameters in a motion control system associated with a mechanical member. The method includes the steps of receiving an indication of a compensation parameter to be tested, based on the compensation parameter to be tested causing a signal associated with a desired motion of the mechanical member to be commanded, acquiring control data associated with the signal, acquiring measurement data associated with actual motion of the mechanical member in response to the signal, analyzing the control and measurement data; and based on the step of analyzing the control and measurement data, implementing a value of the compensation parameter.
Method And Apparatus For Tuning Compensation Parameters In A Motion Control System Associated With A Mechanical Member
In one embodiment, a method and machine are provided for tuning compensation parameters in a motion control system associated with a mechanical member. The method includes the steps of receiving an indication of a compensation parameter to be tested, based on the compensation parameter to be tested causing a signal associated with a desired motion of the mechanical member to be commanded, acquiring control data associated with the signal, acquiring measurement data associated with actual motion of the mechanical member in response to the signal, analyzing the control and measurement data; and based on the step of analyzing the control and measurement data, implementing a value of the compensation parameter.
Apparatus And Method For Smooth Cornering In A Motion Control System
A method and apparatus for controlling motion through consecutive linear spans that define a corner in a desired motion path, such as a motion path in a machine tool system for example, is disclosed. In one embodiment, a plurality of data points that define a desired motion path is provided, and the plurality of data points define a plurality of consecutive spans. It is determined whether two consecutive linear spans define a corner having an angle within a predetermined range, and if so, a non-linear path is determined which connects to the two consecutive linear spans with continuity in curvature. An actuator is then controlled according to the non-linear path.
Method And Apparatus For Tuning Compensation Parameters
A method and apparatus for tuning a feedforward compensation parameter in a motion control system is provided. According to one such embodiment, the method includes the acts of determining an initial value of a feedforward compensation parameter and commanding an initial movement of an actuator according to a test motion routine (wherein the initial value of the parameter is used in the control of the actuator). Error associated with the initial movement is determined. A potential value of the feedforward compensation parameter is determined. A movement of the actuator is commanded according to the test motion routine (wherein the potential value of the parameter is used in the control of the actuator) and error associated with the movement is determined. The errors associated with the movements are compared and, based on the act of comparing the errors, one of the values is selected as a current best value. In a further embodiment, such acts are repeated until the current best value is an optimum value.
Youtube
USJA: ep 1
Meet the United States Justice Association as they heroically battle t...
Duration:
10m 11s
2021 ODP Early-Stage Investigator Lecture - D...
The ODP Early-Stage Investigator Award recognizes early-stage career s...
Duration:
1h 3m 6s
Stephen A. [BREAKING] James Harden could requ...
NBA Countdown | Stephen A. & Woj [BREAKING] James Harden could request...
Duration:
10m 37s
Connections between Psychology and Instructio...
In this follow-up interview to his Keynote Presentation at The Asian C...
Duration:
7m 29s
China's Booming Legal Activity
A clip from an Oct. 2008 presentation by Stephen Yao, president and CE...
Duration:
2m 3s
The rise of collateral-based finance under st...
Research seminar with Ilja Viktorov, researcher at the Department of E...
Duration:
1h 26m 52s
Myles Garrett BENCHED on Sunday by Kevin Ste...
Kevin Stefanski proved on Saturday that he won't play favorites, or di...
Duration:
2h 15s
Community Conversations And Collective Action...
Foundational education about systemic racism coupled with an explorati...