Richard C. Ankney - Chantilly VA Ronald P. Bonica - Falls Church VA Douglas E. Kay - Chevy Chase MD Patricia A. Pashayan - Herndon VA Roy L. Spitzer - Vienna VA
Assignee:
Sprint International Communications Corp. - Reston VA
International Classification:
G06F 1314
US Classification:
395325
Abstract:
A security access management system for a packet switched data communications network has access management apparatus operatively associated with the packet switches at each entry point of the network. The access management apparatus includes an administrative host processor for examining user terminal authorization information in packets received at the associated packet switch for transmission through the network to destination addresses for the packets. A database associated with the administrative host stores information including levels of authorization of the user terminals for the respective entry point of the network for access to specified destinations, as pre-assigned by the network customer. Also included in the access management apparatus is a validation host processor which responds to comparisons between the user terminal authorization information contained in the packet and the pre-assigned level of authorization for the same user terminal, and, if they correspond, to grant access by that user terminal through the associated packet switch to the destination address with which a communication session is requested; or, if they differ, to deny such access. The access management apparatus is located remote from the user terminals using the particular entry point for the network.
Resilient Multiprotocol Label Switching (Mpls) Rings Using Segment Routing
- Sunnyvale CA, US Abhishek Deshmukh - Wilmington MA, US Kireeti Kompella - Los Altos CA, US Tarek Saad - Ottawa, CA Vishnu Pavan Beeram - Naperville IL, US Ronald Bonica - Sterling VA, US
International Classification:
H04L 12/437 H04L 12/24 H04L 12/723
Abstract:
A ring node N belonging to a resilient MPLS ring (RMR) provisions and/or configures clockwise (CW) and anti-clockwise (AC) paths on the RMR by: (a) configuring two ring node segment identifiers (Ring-SIDs) on the ring node, wherein a first of the two Ring-SIDs (CW-Ring-SID) is to reach N in a clockwise direction on the ring and a second of the two Ring-SIDs (AC-Ring-SID) is to reach N in an anti-clockwise direction on the ring, and wherein the CW-Ring-SID and AC-Ring-SID are unique within a source packet routing in networking (SPRING) domain including the ring; (b) generating a message including the ring node's CW-Ring-SID and AC-Ring-SID; and (c) advertising the message, via an interior gateway protocol, for receipt by other ring nodes belonging to the ring such that (1) a clockwise multipoint-to-point path (CWP) is defined such that every other one of the ring nodes belonging to the ring can be an ingress for the CWP and such that only the node is an egress for the CWP, and (2) an anti-clockwise multipoint-to-point path (ACP) is defined such that every other one of the ring nodes belonging to the ring can be an ingress for the ACP and such that only the node is an egress for the ACP.
- Sunnyvale CA, US Ronald BONICA - Sterling VA, US
International Classification:
H04L 12/26 H04L 12/741 H04L 12/749
Abstract:
A network device may receive a message. The network device may determine that the message includes return information indicating a path to an initial device that generated the message. The network device may modify the message by adding an upstream device identifier, wherein the upstream device identifier identifies a device from which the message is received. The network device may modify the message by adding an indication of whether the initial device is reachable by the network device using a segment identifier. The network device may provide the modified message to a downstream device.
Resilient Multiprotocol Label Switching (Mpls) Rings Using Segment Routing
- Sunnyvale CA, US Abhishek Deshmukh - Wilmington MA, US Kireeti Kompella - Los Altos CA, US Tarek Saad - Ottawa, CA Vishnu Pavan Beeram - Naperville IL, US Ronald Bonica - Sterling VA, US
International Classification:
H04L 12/437 H04L 12/723 H04L 12/24
Abstract:
A ring node N belonging to a resilient MPLS ring (RMR) provisions and/or configures clockwise (CW) and anti-clockwise (AC) paths on the RMR by: (a) configuring two ring node segment identifiers (Ring-SIDs) on the ring node, wherein a first of the two Ring-SIDs (CW-Ring-SID) is to reach N in a clockwise direction on the ring and a second of the two Ring-SIDs (AC- Ring-SID) is to reach N in an anti-clockwise direction on the ring, and wherein the CW-Ring-SID and AC- Ring-SID are unique within a source packet routing in networking (SPRING) domain including the ring; (b) generating a message including the ring node's CW-Ring-SID and AC-Ring-SID; and (c) advertising the message, via an interior gateway protocol, for receipt by other ring nodes belonging to the ring such that (1) a clockwise multipoint-to-point path (CWP) is defined such that every other one of the ring nodes belonging to the ring can be an ingress for the CWP and such that only the node is an egress for the CWP, and (2) an anti-clockwise multipoint-to-point path (ACP) is defined such that every other one of the ring nodes belonging to the ring can be an ingress for the ACP and such that only the node is an egress for the ACP.
Apparatus, System, And Method For Discovering Network Paths
- Sunnyvale CA, US Ronald Bonica - Sterling VA, US Ramakrishna Manjunath - Bangalore, IN
International Classification:
H04L 12/721 H04L 12/751 H04L 12/733 H04L 12/741
Abstract:
The disclosed computer-implemented method may include (1) receiving, at a source node, a request to discover a plurality of network paths that each lead from the source node to a destination node and (2) discovering the plurality of network paths by (A) identifying each next hop between the source node and the destination node, (B) sending, from the source node to each next hop, a path-request probe that prompts the next hop to (i) determine each next-closest hop and (ii) return, to the source node, a path-response probe that identifies the next-closest hops, (C) receiving the path-response probes from the next hops, (D) determining, at the source node based on the path-response probes, that one or more of the plurality of network paths include the next hops and the next-closest hops, and then (E) iteratively discovering any subsequent hops by sending a subsequent path-request probe to each next-closest hop.
Apparatus, System, And Method For Probing The Status Of Unreachable Virtual Interfaces Partitioned On Remote Physical Interfaces
- Sunnyvale CA, US Ronald Bonica - Sterling VA, US Rafik Puttur - Dakshina Kannada, IN
International Classification:
H04L 12/26 G06F 9/455
Abstract:
A disclosed method may include (1) receiving, at a proxy node within a network, an echo request from a probing node within the network, (2) identifying, within the echo request, a type of probe to be performed in connection with the echo request, (3) determining, based at least in part on the type of probe identified within the echo request, that a proxy interface included on the proxy node is to probe a status of a virtual interface partitioned on a physical interface, (4) probing, via the proxy interface, the status of the virtual interface partitioned on the physical interface by way of a virtual function index assigned to the virtual interface, and then (5) sending, to the probing node, an echo reply that identifies the status of the virtual interface partitioned on the physical interface. Various other apparatuses, systems, and methods are also disclosed.
Apparatus, System, And Method For Discovering Network Paths
- Sunnyvale CA, US Ronald Bonica - Sterling VA, US Ramakrishna Manjunath - Bangalore, IN
International Classification:
H04L 12/721 H04L 12/751 H04L 12/733 H04L 12/741
Abstract:
The disclosed computer-implemented method may include (1) receiving, at a source node, a request to discover a plurality of network paths that each lead from the source node to a destination node and (2) discovering the plurality of network paths by (A) identifying each next hop between the source node and the destination node, (B) sending, from the source node to each next hop, a path-request probe that prompts the next hop to (i) determine each next-closest hop and (ii) return, to the source node, a path-response probe that identifies the next-closest hops, (C) receiving the path-response probes from the next hops, (D) determining, at the source node based on the path-response probes, that one or more of the plurality of network paths include the next hops and the next-closest hops, and then (E) iteratively discovering any subsequent hops by sending a subsequent path-request probe to each next-closest hop.