Improvements in a gasification system and process for gasifying carbonaceous feedstock with improved energy efficiency. Improved methods and systems for more efficient removal of particulates from a raw synthesis gas while simultaneously providing a novel mechanism for fluxing agent addition to the gasification reactor. A conditioning agent, in the form of coarse fluxing agent particles, is added to the raw synthesis gas upstream from the particle filtration unit. The conditioning agent allows more rapid turnaround of the filtration unit following filter element replacement, extend filter life, facilitates the removal of filter cake from the particle filters, and combines with removed filter cake for recycling to the gasifier. Addition of fluxing agent via this route eliminates the need to premix fluxing agent with the carbonaceous feedstock, thereby maximizing the rate of feedstock addition to the gasification reactor.
Improvements in a gasification system and process for gasifying carbonaceous feedstock with improved energy efficiency. Improved methods and systems for more efficient removal of particulates from a raw synthesis gas while simultaneously providing a novel mechanism for fluxing agent addition to the gasification reactor. A conditioning agent, in the form of coarse fluxing agent particles, is added to the raw synthesis gas upstream from the particle filtration unit. The conditioning agent allows more rapid turnaround of the filtration unit following filter element replacement, extend filter life, facilitates the removal of filter cake from the particle filters, and combines with removed filter cake for recycling to the gasifier. Addition of fluxing agent via this route eliminates the need to premix fluxing agent with the carbonaceous feedstock, thereby maximizing the rate of feedstock addition to the gasification reactor.