A corrugator single facer of the type utilizing a large diameter bonding and corrugating roll and a small diameter corrugating roll is driven without direct drive applied to either corrugating roll. Instead, the pressure belt arrangement which supports the lower corrugating roll to provide the nipping force includes a series of driven supporting pressure belts that are loaded against the lower corrugating roll and which transmit rotational movement thereto and through the nip to the large diameter bonding roll.
Single Facer With Resilient Small Diameter Corrugating Roll
Dennis L. Lemke - Phillips WI Robert W. Klimowski - Phillips WI Eric J. Obermeyer - Phillips WI Carl R. Marschke - Phillips WI
Assignee:
Marquip, LLC - Phillips WI
International Classification:
B31F 120
US Classification:
493463, 156462, 156472
Abstract:
A single facer for corrugated paperboard of the type using a very large diameter fluted bonding roll and a much smaller diameter fluted corrugating roll which engages the bonding roll to provide a corrugating nip. The small diameter corrugating roll is made to be resilient by utilizing a thin walled roll shell so that it is capable of inward deflection in the corrugating nip in order to cushion impact and absorb the deflection as the rolls interengage along the nip. This cushioning deflection absorbs vibrational movement due to chordal action of the interengaging flutes, and thereby reduces noise level and roll wear and improves the quality and consistency of corrugation. A modified flute profile, compensating for flute pitch variations between the large diameter bonding roll and small diameter corrugating roll, assures uniform flute-to-flute engagement in the corrugating nip. Strategic positioning of the supporting stub shafts for the thin walled small corrugating roll axially outside the flute patterns provides substantially uniform small roll deflection along the nip.
Single Facer With Resilient Small Diameter Corrugating Roll
A single facer for corrugated paperboard of the type using a very large diameter fluted bonding roll and a much smaller diameter fluted corrugating roll which engages the bonding roll to provide a corrugating nip. The small diameter corrugating roll is made to be resilient so that it is capable of inward deflection in the vicinity of the corrugating nip in order to cushion impact as the rolls interengage along the corrugating nip. This cushioning deflection absorbs vibrational movement due to chordal action of the interengaging flutes, and thereby reduces noise levels, roll wear and improves the quality and consistency of corrugation.
A corrugator single facer of the type utilizing a large diameter bonding roll and a small diameter corrugating roll provides quick roll change capability by mounting three large diameter bonding rolls on a rotatable turret and carrying corresponding small diameter corrugating rolls in a magazine positioned laterally offset from the machine. By driving the corrugating rolls indirectly through the pressure belt arrangement which supports the lower corrugating roll, roll change is significantly simplified.
Self-Valving Vacuum Distribution For A Belt-Driven Sheet Conveyor
John J. Kondratuk - Kennan WI, US Carl R. Marschke - Phillips WI, US
Assignee:
Marquip, LLC - Phillips WI
International Classification:
B65H 29/32
US Classification:
271197, 271194, 1986891
Abstract:
A self-valving vacuum distribution system for a belt-driven sheet conveyor utilizes the sheets to automatically open vacuum control valves sequentially in a downstream direction as the sheet is carried on the belts. The system also automatically adjusts for varying sheet widths to automatically apply vacuum holding force only to the belt conveyor area covered by the sheet.
Method And Apparatus For Manufacturing Open Core Elements From Web Material
A continuous, fully automated and highly productive system for the production of open core elements utilizes various formations of fluted input webs which are cut into strips, glued, cross-transferred, and serially upended for placement against preceding strips to build up an open core element. The open core elements are useful in the manufacture of structural members such as doors, floor panels and all panels.
A stress-optimized structural support which may be utilized as a beam or assembled with similar supports to form a building floor or roof panel or a bridge deck utilizes an open core element, made preferably of suitably treated fluted paper, upper and lower thin skin sheets, preferably steel skins, and a layer of concrete poured over the top skin. Modules comprising the hollow core element and the upper and lower skin sheets are fabricated to lengths required for building floor, roof or bridge spans and, when joined by welding or otherwise joining the upper and lower skin sheets of adjacent elements along their full lengths, provide a floor or roof deck structure of a large span with horizontal stresses distributed omnidirectionally. A post-stressing tensile system redistributes and reduces the load on the roof deck by about one-half. Small building decks utilizing the stress redistribution system can be combined to build a large span roof in which multiple tensioning systems are coordinated to simultaneously effect the load redistribution.
Building wall panels having lightweight hollow core interiors include embodiments suitable for interior and exterior walls, for industrial, commercial or residential buildings, and for multi-story structures. Various methods for making these wall panels are disclosed, including the formation of cast gypsum firewall layers.